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Hydrodynamics of smectic-C liquid crystals: Field and flow induced instabilities
in confined geometries

Sreejith Sukumaran* and G. S. Ranganath†

Raman Research Institute, Sadashivanagar, Bangalore 560 080, India
~Received 1 October 1997!

Following the Ericksen-Leslie approach, we formulate a complete nonlinear macroscopic theory of the
isothermal hydrodynamics of smectic-C liquid crystals. We assume an asymmetric stress tensor and incorpo-
rate the essential features of a hydrodynamic theory of a smectic phase, i.e., permeation and variations in layer
spacing. Using Onsager’s reciprocity relations, we find that entropy production is described by 16 viscosity
coefficients and a permeation constant associated with the dissipative dynamics of the layered system. We
study the reorientation dynamics of thec vector under the destabilizing influence of an external field. We stress
that permeation is important and that transverse flows along and normal to the layers exist. We have also
studied certain instabilities that can arise in shear flows. As a consequence of permeation, in Poiseuille flow
with the layers parallel to the plates, we find that the length of the inlet section can be very large being many
times the lateral dimension. When the layers are perpendicular to the plates, an analog of the nematic Hall
effect is shown to exist even in the absence of an aligning external field.@S1063-651X~98!03305-4#

PACS number~s!: 61.30.2v, 03.40.Gc, 47.20.2k, 83.20.2d
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I. INTRODUCTION

The hydrodynamics of smectic-C ~Sm-C! liquid crystals
~LCs! is different because it incorporates the flow of a flu
as in ordinary fluid mechanics, the dynamics of oriented m
dia as in nematic LCs, and also the dynamics of laye
media such as smectic-A LCs. As a consequence of the co
pling that exists between these, even in the linear regime
theory is complex and theoretical investigations on mac
scopic flows have been very limited. In 1972, Martin, Paro
and Pershan~MPP! @1# formulated a linearized hydrody
namic theory of Sm-C LCs that has been very successful
the study of fluctuations. A more complete nonlinear vers
of this theory has been developed by others@2,3# and the
results follow along the lines of MPP. The stress tenso
assumed to besymmetricand the phenomenon ofpermeation
is also described when there exists flow in a direction nor
to the layers. However, these theories have not been use
describe macroscopic flows. Nearly 20 years later, Les
Stewart, and Nakagawa~LSN! @4,5#, following the approach
of Ericksen and Leslie@6,7# in the formulation of the hydro-
dynamics of uniaxial nematic LCs, developed a theory t
allows for nonlinear coupling between curvature of the la
ers, director orientation, and macroscopic flow. They use
asymmetricstress tensor, but permeation and layer dilatat
or compression are not included in their theory. Hence th
two approaches are different. The theory of MPP has b
used to describe fluctuations and the theory of LSN has b
employed recently in describing reorientation dynamics a
the effects of ‘‘backflow’’ @8–11#.

Here we formulate a macroscopic hydrodynamic the
based on the principles of classical mechanics that gener
concepts of linear and angular momentum employed in c
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sical Newtonian mechanics. We assume anasymmetricstress
tensor and incorporate the essential features of a hydro
namic theory of a smectic phase, that is,permeationand
variations in layer spacing. First, we present an outline o
the complete nonlinear macroscopic theory of the isother
hydrodynamics of Sm-C LCs that can be applied even t
chiral smectic-C ~Sm-C* ) LCs. Our main aim in proposing
this theory is to systematically derive the equations of m
tion by generalizing forces and torques. Using Onsage
reciprocity relations, we find that the entropy production in
compressible system of monoclinic symmetry embody
dissipative torques is described by 16 viscosity coefficie
and a permeation constant arising from the dissipative
namics of the layered system. It may be mentioned in pa
ing that LSN’s theory has 20 viscosity coeffients for t
incompressible case. Our theory incorporates coupling
tween the different hydrodynamic variables, viz., veloci
layer spacing, and thec vector. It is a covariant description in
the sense that the constraints of the system have been in
porated and the theory is not limited to mere perturbations
planar structures. The main problem regarding experime
and theoretical investigations of Sm-C LCs has been the
complexity arising from such couplings. Focal conics, che
ron textures, and other topological defects that hamper
perimental work require the complete nonlinear theory
their desciption. We develop a linear analysis of instabilit
that bring out the intimate coupling between the hydrod
namic variables. The onset of such instabilities might lead
the generation of the above-mentioned topological defe
To reduce the complexity of the problems, the earlier stud
@5,8–10# assumed that~i! the layers are flat and even intro
duced external counter torques to ensure such a cond
and ~ii ! the flow along the layer normal is negligible, thu
neglecting permeation. Though these assumptions ap
reasonable, they lead to mathematical inconsistencies an
incomplete description of even well-known instabilities su
as the Fre´edericksz transition. We have studied certain fie
5597 © 1998 The American Physical Society
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5598 57SREEJITH SUKUMARAN AND G. S. RANGANATH
and flow induced instabilities and our analysis leads to
more complex behavior in each case. Incidentally, e
though we work with an asymmetric stress tensor, the line
ized version of our theory is similar to that of MPP~as in the
case of uniaxial nematics LCs! apart from a difference in the
choice of forces and fluxes in developing the constitut
equations. This choice merely depends on the type of
problem one is tackling. For instance, the Ericksen-Le
approach in uniaxial nematics LCs is instructive when o
considers field and flow induced instabilities; howev
MPP’s theory is useful to study only small fluctuations a
wave propagation@12#.

The reorientation dynamics of the director under the
stabilizing influence of an external field is of paramount i
portance in modeling electro-optic devices. Recent wo
@8–10# emphasize the effects of backflow and point out t
transverse flow within the fluid layer alters the director p
file. Barratt and Duffy @11# reanalyzed this problem an
showed that the earlier analyses lead to overdeterm
equations. These authors included flow in the direction n
mal to the layers, but without incorporating permeatio
Qualitatively, all these investigations result in predicti
similar behavior. Since macroscopic flow normal to the la
ers involves the effects of permeation, the real dynamic
different. We present preliminary investigations on mac
scopic dynamics involving permeation. We point out th
transverse flows and flow normal to the layers that is coup
to the curvature elasticity of the layers are essential fo
complete hydrodynamic desciption of smectic LCs. We ha
also analyzed certain instabilities that could arise in sh
flows. Finally, we study Poiseuille flow in two geometrie
viz., with the layers parallel and perpendicular to the bou
ing plates. In general, in the standard discussion of Poise
flow, we do not consider the process by which the fluid
tains a steady state. This is invariably confined to a sm
region called the inlet section at the entry point. Surprising
in the flow of smectics LCs, we cannot ignore in certa
geometries the length of the inlet section. We find that in
case of flow with layers slipping past each other, the len
of the inlet section is very large as a consequence of per
ation in the region of nonsteady flow. This result is true
all smectics LCs in general. In the case of Poiseuille fl
within layers, an analog of the nematic Hall effect, i.e.,
pressure gradient in a direction perpendicular to the velo
and the velocity gradient, exists even in the absence o
external field. This is peculiar to Sm-C LCs and does no
exist in Sm-A LCs.

II. HYDRODYNAMICS OF SMECTIC- C LCs

A Sm-C liquid crystal is a layered structure in which th
director n, which represents the preferred direction of t
local molecular orientation, is everywhere inclined at t
same angle with respect to the layer normal. These liq
crystals can be described by a density variation along
layer normal,

r5r01@dr exp iqSc1c.c.#, ~1!

where qS52p/d, with d the layer spacing anddr is the
amplitude of the density variations. The smectic layers
a
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surfaces withc(r )5const. A deformed smectic stuctur
with theZ axis normal to the undeformed layers, is describ
by c(r )5z2u(r ).

The hydrodynamic equations are always in terms of
hydrodynamic variables. These variables are character
by slow decay times proportional to some power of th
wavelengths. The number of such variables is determined
the sum of the number of conservation laws and the num
of ‘‘continuous broken symmetries.’’ As in ordinary fluids
here also we have the density, the components of the ve
ity, and the energy density as five hydrodynamic variab
associated respectively with the conservation of the mass
momentum, and the energy. In addition to these, we h
variables describing the broken translational invariance
one dimension, as described by the layering, and the bro
rotational invariance of the directorn, as described by a
transverse twofold axis. These variables are, respectively
scalar variablec and the vectorc that is the projection ofn
onto the layers. The vectorc is subject to the constraint
c–c51 andc–N50, whereN is the unit layer normal given
by ¹c/u¹cu. It may be remarked here that in the theory
LSN, the constraint¹3N50 is imposed on the structura
deformations. This by itself cannot explicitly take care
general layer deformations and the process of permea
On the other hand, our constraints onc andN allow for these
processes. It should be noted that in this hydrodynam
description of Sm-C LCs, a variation in the tilt ofn with
respect to the layer normal is not permitted. The macrosco
dynamics of any system does not depend on whether
stress tensor is symmetric or asymmetric. We choose
asymmetric stress tensor since it is more appropriate to th
systems that allow for internal torques.

A. Conservation laws

In writing down the complete isothermal hydrodynami
of Sm-C LCs, we consider a compressible material at ea
point xk and also assume that the system has reached s
tical equilibrium locally. The orientation of the directorn is
completely described byc and N since the tilt ofn with
respect toN is nothing but the order parameter~tilt angle! of
the Sm-C phase. The approach of LSN has been to cons
Sm-C LCs as a biaxial system described byc andN. Then
torques on the system can be considered to consist of
parts@13#. One part arises from the familiar moment of line
momentum of the fluid particle, while the other part is due
torques that changec andN. SinceN is completey described
by ¹c/u¹cu, generalized torques leading to changes inN can
be equivalently described by generalized forces resulting
second-order gradients inc. An example of this is in the
equations of equilibrium of smectic-A LCs. Here, withc as
the hydrodynamic variable, the stress tensor does not nee
have an antisymmetric part because torques are totally du
moment of linear momentum of fluid particles and the co
servation of angular momentum is implicit. However, in Sm
C LCs there is an additional internal degree of freedom d
to c. The difference between the total angular moment
and the moment of linear momentum can be attributed to
internal angular momentum leading to changes in thec vec-
tor. In Sm-C LCs, the equation for the conservation of th
angular momentum acquires an independent status.
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leads, in Sm-C LCs, to an equation that is similar to th
Oseen equation of nematic LCs.

At any time t, the conservation~for a volumeV of the
fluid bounded by surfaceA! of mass, linear momentum, en
ergy, and angular momentum, respectively, leads to
equations

D

DtEV
r dV50, ~2!

D

DtEV
rv idV5E

V
r f idV1 R

A
s j i dAj , ~3!

D

DtEV
r dV@ 1

2 v iv i1U1 1
2 rcċi ċi #5E

V
r dV@ f iv i1Giċi #

1 R
A
dAj@s j i v i1p j i ċi #, ~4!

D

DtEV
r dVei jk@xjvk1rccj ċk#5E

V
r dV ei jk@xj f k1cjGk#

1 R
A
dAlei jk@xjs lk

1cjp lk#. ~5!

Further, the Oseen equation for thec vector is

D

DtEV
rrcċidV5E

V
@rGi1gi #dV1 R

A
p j i dAj , ~6!

wherer is the density,D/Dt is the material derivative,dAi
is a vector representing the area element, anddV is the vol-
ume element. Further,v i , f i ,s j i ,Gi ,gi , andp j i are, respec-
tively, the components of the velocity, force, stress tens
external director body force, intrinsic director body forc
and director surface stress tensor. In Eq.~4!, U is the internal
energy per unit mass, andrc is the moment of inertia per uni
mass. This moment of inertia depends only on the degre
orientational order and hence is a constant at a given t
perature and pressure.

With Reynold’s transport theorem and Gauss’s theore
Eqs.~2!–~6! imply

Dr

Dt
1rvk,k50, ~7!

r
Dv i

Dt
5r f i1s j i , j , ~8!

rrc

D2ci

Dt2
5rGi1gi1p j i , j , ~9!

r
DU

Dt
5s j i di j 1p j i ~ ċi , j2v ikck, j !2gi~ ċi2v ikck!, ~10!

s jk1cj ,lp lk2cjgk5sk j1ck,lp l j 2ckgj , ~11!
e

r,
,

of
-

,

where di j 5
1
2 (v i , j1v j ,i), v i j 5

1
2 (v i , j2v j ,i), s j i , j

5]s j i /]xj , p j i , j5]p j i /]xj , v i , j5]v i /]xj , ci , j

5]ci /]xj , andċi5 Dci /Dt. The moment of inertia associ
ated with thec vector,rc , is an extremely small quantity an
is negilgible. In other words, we ignore this inertia term in
our future discussion.

If S is the entropy per unit mass at an absolute tempe
ture T, then the Helmholtz free energy per unit mass isF

5U2TS. According to thermodynamics,Ṡ, the rate of en-
tropy generation, is always positive. At constant temperatu
this means

rTṠ5rU̇2rḞ>0. ~12!

B. Constitutive equations

We assume thatF is a single-valued function of the vari
ables r,c ,i ,Ni ,Ni , j ,ci , and ci , j . Using the chain rule of
differential calculus to expandḞ and making use of Lan-
grange multipliers to express the constraintsc–c51, c–N
50, and the fact thatN5 ¹c/u¹cu, we have

Ḟ5
]F

]r

Dr

Dt
1

]F

]c ,i

Dc ,i

Dt
1

]F

]Ni

DNi

Dt
1

]F

]Ni , j

DNi , j

Dt

1
]F

]ci

Dci

Dt
1

]F

]ci , j

Dci , j

Dt
1lNi

Dci

Dt
1lci

DNi

Dt

1gci

Dci

Dt
1b i

D

Dt
~c ,i2uc ,i uNi !,

wherel,g, andb i are the Langrange multipliers. Then it
easy to show that

E
V
rḞ dV5 R

A
dAiFL i ċ1r

]F

]Nj ,i
Ṅ j1r

]F

]cj ,i
ċ j G

1E
V
dVFdi j S 2r2

]F

]r
d i j 2c ,iL j2rNk,i

]F

]Nk, j

2rck,i

]F

]ck, j
D2v i j S c ,iL j1rNk,i

]F

]Nk, j
2cjhi

c

1rck,i

]F

]ck, j
2lrNicj D1Ṅi~hi

N1lrci

2b iruc ,mu!2ċL i ,i1( ċi2v i j cj )~hi
c1lrNi

1grci !G ,

whereuc ,i u is a measure of layer curvature and dilatation
contraction, L i5r (]F/]c ,i) 1rb j Pji , hi

N5r (]F/]Ni)
2@r(]F/]Ni , j )# , j , hi

c5r (]F/]ci) 2@r(]F/]ci , j )# , j ,
and Pi j 5d i j 2NiNj . With p j i 5r(]F/]ci , j ), Nihi

c

52rl, Nigi52rNi(]F/]ci), Pik(gk1p lk,l1hk
c)1rgci

5Pikgk8, s j i 5s j i8 2r2 (]F/]r) d i j 2rc ,i (]F/]c , j )
2Ni Pk jhk

N2rNk,i (]F/]Nk, j ) 2rck,i (]F/]ck, j ), and mak-

ing use of Ṅi5 (Pik /uc ,mu)(Dc ,k /Dt), the expression for
entropy generation is
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TE
V
rṠ dV5 R

A
dAiF2S r

]F

]c i ,i
1

Pki

uc ,mu
hk

ND ċ2r
]F

]Nj ,i
Ṅ j G

1E
V
dVFs j i8 di j 1v i j Wi j 1ċS r

]F

]c ,i

1
Pkihk

N

uc ,mu D
,i

2Pikgk8( ċi2v i j cj )G , ~13!

where

Wi j 5rc ,i

]F

]c , j
1rNk,i

]F

]Nk, j
2rcj

]F

]ci
2rcj ,k

]F

]ci ,k

1rck,i

]F

]ck, j
1Ni Pk jhk

N .

Sincev i j can be varied arbitrarily by superposed rigid ro
tions,Wi j 5Wji . Hence, from Eq.~11! we get the relation

s j i8 2Pikcjgk85s i j8 2Pjkcigk8. ~14!

At this point, we recapitulate the interpretation of Kle´man
and Parodi@14# regarding the surface terms that appear
Eq. ~13!. With layers parallel to a plane surface, the first te
describes the effects due to an imposition of a dilatation~or
contraction! of layers. When the dilatation is large, this pr
cess leads to the creation of edge dislocations and then
number of layers in the system will not be conserved. Wh
the layers are normal to a plane surface, the second
leads to depinning of layers along the surface in order
relax their bending. The last term plays the role of a surf
torque. We shall not deal with these surface terms any
ther since we are interested in problems wherein the num
of layers is conserved and the surface torques and laye
pinning are considered to be absent due to boundary co
tions. Weinan@15#, following Kléman and Parodi, has ver
recently developed a nonlinear continuum theory of smec
A liquid crystals. His derivation and interpretation of th
permeative force is similar to that presented in this pape

The entropy generation in the bulk satisfies the inequa

rTṠ5s j i8 di j 1ċS r
]F

]c ,i
1

Pkihk
N

uc ,mu D
,i

2Pikgk8~ ċi2v i j cj !>0. ~15!

The first term is associated with shape and volume chan
as in normal hydrodynamics, the second describes diss
tive dynamics of the layered structure, and the third is due
dissipative torques along the layer normal and acting on
c vector. It should be noted that torques on thec vector that
distort the layer are described by the second term and
have removed such contributions from the last term~not to
count the same thing twice, of course! by making use of the
constraintc–N50.
-
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C. Free energy and dissipative part of the stress tensor

The free-energy density and the dissipative part of
stress tensor should be invariant under the transformati
N→2N and c→2c . The free energy densityF85rF of
Sm-C satisfying this constraint has been worked out by N
kagawa@16#. It has the form

rF5
A11

2
~c–¹a–b!21

A21

2
~b–¹a–b!21

A12

2
~c–¹a–c!2

1
L1

2
~c–¹a–N!21

L2

2
~b–¹a–N!21

L3

2
~N–¹a–N!2

1L13~c–¹a–N!~N–¹a–N!1
B

2
~a–N21!2

1
B1

2
~c–¹c–b!21

B2

2
~b–¹c–b!21

B3

2
~N–¹c–b!2

1B13~c–¹c–b!~N–¹c–b!2C1~c–¹a–b!~c–¹c–b!

2C2~b–¹a–b!~b–¹c–b!2M1~c–¹a–N!~b–¹a–b!

1M2~c–¹a–N!~c–¹a–c!1N1~c–¹a–N!~b–¹c–b!

1N2~b–¹a–N!~N–¹c–b,! ~16!

where a5¹c ~a5N when there is no layer dilatation o
contraction! andb5N3c. When the variations are assume
to be small, this reduces to the free-energy density of the
Gennes and Prost@12#. It should be mentioned in passin
that in this model of Nakagawa@16#, instead of¹3N50, it
is ¹3a50. This condition also precludes the existence
dislocations and in addition allows for a more general d
scription of layer distortions. We are adopting here the p
cedure of Nakagawa.

Then the entropy generation inequality~15! implies that

ċ5lpS r
]F

]c ,i
1

Pkihk
N

uc ,mu D
,i

, ~17!

wherelp is a constant called the permeation constant int
duced by Helfrich@17# for layered systems. Equation~17!
has the form of a continuity equation. Within the context
continuum mechanics, Eq.~17! describes a situation in
which any relative motion of the fluid particles with respe
to the layers results in a distortion of the layers. Further,
Helfrich pointed out@17#, with the layers fixed at the bound
aries, any flow normal to the layers would experience a la
viscosity, and the velocity in that direction would be propo
tional to the pressure gradient just as in flow through por
media. With the layers fixed rigidly at the walls, a part of t
pressure gradient distorts the layers and the remaining
leads to fluid flow through a ‘‘fixed layered structure.’’ Th
permeation constantlp can be roughly estimated to b
lph;d2, whereh andd are, respectively, the viscosity co
efficient and the smectic layer separation. Roughly,lp
;10213210214 g21 cm3 s.



f

r

57 5601HYDRODYNAMICS OF SMECTIC-C LIQUID . . .
Following the Ericksen-Leslie formalism@6,7#, we write
down the most general expressions fors j i8 andgi8

s j i8 5AjikMk1Ajikmdkm , ~18!

gi85Bi j M j1Bi jkdjk , ~19!
f
t
.

pi
ri
p
m
g

ini

e

whereMi5Pik( ċk2vk jcj ) describes the relative rotation o
c with respect to the fluid due to torques alongN and has the
propertiesMici5MiNi50. The most general expression fo
s j i8 andgi8 consistent with the symmetry of Sm-C LCs, @Eq.
~14!# and the Onsager reciprocity relations are
s j i8 52
g2

2
~NjMi1NiM j !2

g3

2
~cjM i1ciM j !1

g1

2
~cjM i2ciM j !1a1d i j dkk1a2di j 1a3~NkNmdkmd i j 1NiNjdkk!

1a4~NjNmdim1NiNmdjm!1a5~ckcmdkmd i j 1cicjdkk!1a6~cjcmdim1cicmdjm!1
g1

2
~cjcmdim2cicmdjm!

1a7~Nkcmdkmd i j 1Nicjdkk1Njcidkk!1a8~Njcmdim1Nicmdjm1Nmcjdim1Nmcidjm!1
g2

2
~Nmcjdim2Nmcidjm!

1a9~Nicj1Njci !Nkcmdkm1
g3

2
~Njci2Nicj !Nkcmdkm1a10~Nicjckcm1Njcickcm1cicjNkcm!dkm1a11~ciNjNkNm

1cjNiNkNm1NiNjckNm!dkm1
g2

2
~ciNj2cjNi !NkNmdkm1a12NiNjNkNmdkm1a13cicjckcmdkm , ~20!

gi85g1Mi1g2Nkdik1g3ckdik . ~21!
f

eory

how
and
ed,
These expressions can now be compared with those o
Gennes and Prost@12#. In principle, there is full agreemen
between our approach and that of de Gennes and Prost

D. Linearized equations

Before we tackle the various situations of macrosco
flow, we will choose a suitable parametrization of the va
ables and present the hydrodynamic equations in an ap
priate form that is convenient to make a more complete co
parison with the theory of MPP. Since we will be studyin
perturbations of a planar structure with the layer normal
tially aligned along theZ axis, we choose

c5z2u~x,y,z!. ~22!

Then a suitable parametrization of the layer normal and thc
vector is

N.S 2
]u

]x
,2

]u

]y
,1D , ~23!

c.S cosf,sin f,
]u

]x
cosf1

]u

]y
sin f D , ~24!

wheref is the angle made by thec vector with theX axis,
the direction of the undistortedc vector. We take the free
energy density up to linear terms in the gradients ofu and
ignore terms such as]2u/]xi]z since the term]u/]z would
be of the highest order. If linearized inf also, the expression
reduces to that of de Gennes and Prost.

Finally, the hydrodynamic equations become
de

c
-
ro-
-

-

Dr

Dt
1rvk,k50, ~25!

r
Dvx

Dt
52P,x1s jx, j8 , ~26!

r
Dvy

Dt
52P,y1s jy , j8 , ~27!

r
Dvz

Dt
52P,z1s jz, j8 1

dF

du
, ~28!

]u

]t
2vz5lp

dF

du
, ~29!

gy8cx2gx8cy5
]F

]f
2S ]F

]f , j
D

, j

, ~30!

whereP @5r2 (]F/]r)# is the pressure and

dF

du
5S ]F

]uz
D

,z

2S ]F

]uxx
D

,xx

2S ]F

]uyy
D

,yy

22S ]F

]uxy
D

,xy

.

Written in this form, our theory is exactly similar to that o
MPP apart from the fact that we have used anasymmetric
stress tensor. To summarize, the main features of our th
are the following.

~i! We make use of an asymmetric stress tensor and s
that our theory does correspond to that of de Gennes
Prost when the hydrodynamic equations are lineariz
which was not possible with the theory of LSN.
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~ii ! The theory is covariant in the sense that the constr
N–c50 is imposed whereby simultaneous rotations ofN and
c do not cost energy. This allows for a general description
large distortions of thec vector and the layers. Our theor
also allows for variations in layer spacing.

~iii ! Permeation is included in the theory.

III. APPLICATIONS

A. Field induced instabilities

In recent times, there has been considerable interest@8–
11# in the dynamics of reorientation under the destabiliz
influence of a field. The interest has been spurred on by
possibility of fast-switching electrooptic devices. Though w
shall be studying the effect of a magnetic field on a sam
of aligned Sm-C LCs, the results can be extended to t
effect of an electric field on surface stabilized ion-free fer
electric liquid crystals.

We consider the sample to be confined between plate
y56( l /2) with the layers in the so-called bookshelf geo
etry, i.e., perpendicular to the plates and along theX-Y
plane. At the plates, thec vector is considered to be rigidl
anchored along theX axis. The geometry is depicted in Fig
1. A magnetic field is applied along theY direction and acts
as a destabilizing field onc provided we include the inheren
biaxiality of the system and the appropriate diamagnetic
isotropy is positive. This is akin to the familiar splay ric
Fréedericksz effect in the homogeneous geometry of a n
atic. This instability occurs at a threshold fieldHc . When the
sample ‘‘switches’’ to this state, thec vector will develop a
component along theY axis and there will be a transient flow
called ‘‘backflow’’ in the transverse direction, i.e., theX
axis. It has been shown that as in nematic LCs@18,19#, here
also forH.Hc , the effect of backflow is to alter the directo
profile and the response time of switching during this tra
sient state@8,11#. The linear stability analysis of these a
thors @8–11#, which is similar to that used in uniaxial nem
atic LCs, assumes that the layers are flat and the existen
flow is along theX direction. Though flow in the direction
normal to the layers has also been considered@11#, since the
effects of permeation have been ignored by Barratt
Duffy, their analysis is incomplete. We have incorporat
permeation and reanalyzed the problem. We assume tha
hydrodynamic variables are functions ofY and vary with
time asef t, wheref is the inverse of a relaxation time. Whe
f .0, the perturbation grows and the stationary state
comes unstable. The acceleration terms associated with
roscopic flow may be neglected compared to viscous ter
Since we are interested in the growth of the instability,
shall be concerned with the linearized force and torque eq

FIG. 1. Schematic representation of the geometry for Fre´eder-
icksz transition.
nt

f

e

le

-

at
-

-

-

-

of

d

the

e-
ac-
s.
e
a-

tions. The velocity field is taken asv5(vx ,0,vz). Then the
relevant equations are

f a1f ,y1a2vx,yy1a3vz,yy50, ~31!

f a4f ,y1a3vx,yy1a5vz,yy5A21u,yyyy1C2f ,yyy , ~32!

f u2vz52lp~A21u,yyyy1C2f ,yyy!, ~33!

f a6f2a1vx,y2a4vz,y52hf2B2f ,yy2C2u,yyy ,
~34!

where a152 (g11g3)/2, a25 1
2 (a21a62g32 g1/2), a3

5 1
4 (2a82g2), a452 g2/2, a55 1

2 (a21a4), a65g1, and
h5xaH2. xa is the diamagnetic anisotropy associated w
the c vector. Here and in the rest of the paper we have u
the notationf ,y5]f/]y andf ,yy5]2f/]y2.

Equations~31!–~34! have to be solved with the boundar
conditions f5vx5vz5u5u,y50 at the plates. The las
condition implies that the layers are clamped at the pla
This condition of layer clamping takes care of one mo
boundary condition necessary to completely solve the fou
order differential equation. It should also be noted that if
assume the layers to be flat or the velocity normal to
layers to be zero, we would get an overdetermined se
equations. This is true even if the coupling constant is n
existent, i.e.,C250. Hence the earlier results@8,11# obtained
under such assumptions are not realistic. Our theory has
rected this error.

1. Effect of C2

The term in the free-energy densityF8, that involvesC2
is allowed by the symmetry of the system. It couples dist
tions in thec vector with layer curvature. The equations
equilibrium ~33! and ~34! couple these variables. We sha
now discuss the effects ofC2 on the Freedericksz transition

The solution that satisfies the equations of equilibriu
and the boundary conditions is

f5AS coshky2cosh
kl

2 D , ~35!

u5BS sinh ky2
2y

d
sinh

kl

2 D1CyS y22
l 2

4 D , ~36!

where B52AC2 /A21k, C5(2AC2 /A21kl2)@k cosh(kl/2)
2(2/l )sinh(kl/2)#, and the critical field at which the instabil
ity sets in is given by the relationhc52(A21B2

2C2
2)kc

2/A21, wherekc is a solution of the transcendent
equation 12C2

21(A21B22C2
2)(kcl )

25@24C2
2/kcl #tanh(kcl/

2). It is to be noted that the sign ofC2 does not change the
end results and that the threshold isreducedbecause of this
coupling parameter. Hence, when distortions in the orien
tion are coupled to layer curvature, the bare elastic cons
B2 is replaced by a smaller effective elastic constantB2

e f f ec.
Another feature of this solution is that if the wave numberkc
(k is imaginary! can be extracted experimentally and if it
not equal top i ( i 5A21), it will unequivocally establish
that C2Þ0. An indication of layer curvature in the stati
situation also establishes the same result.
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2. Dynamic response

To bring out the main features of the dynamics of reo
entation we need not explicitly includeC2 since it only cor-
rects slightly the end results and the form of the solution
not altered. A solution of the differential equations~31!–~34!
satisfying the already specified boundary conditions is
tained by assuming the ansatz

f5(
i 51

3

h i S coshkiy2cosh
ki l

2 D ,

vx5(
i 51

3

m i S sinh kiy2
2y

l
sinh

ki l

2 D ,

vz5(
i 51

3

n i S sinh kiy2
2y

l
sinh

ki l

2 D ,

u5(
i 51

3

j i S sinh kiy2
2y

l
sinh

ki l

2 D .

Then we find that

m i52
f

kiXi
@~a1a52a3a4!~ f 1lpA21ki

4!2a1A21ki
2#h i ,

~37!

n i52
f

kiXi
@~a2a42a1a3!~ f 1lpA21ki

4!#h i , ~38!

j i52
f

kiXi
~a2a42a1a3!h i , ~39!

h25
X2

X1

k2

k1

M2

M1
h1 , ~40!

h35
X3

X1

k3

k1

M3

M1
h1 , ~41!

where Xi5(a2a52a3
2)( f 1lpA21ki

4)2a2A21ki
2, Zi

5ki cosh(kil/2)2(2/d)sinh(kil/2), Qi5(a1
2a522a1a3a4

1a2a4
2)( f 1lpA21ki

4)2a1
2A21ki

2, M15Z2k3
4 sinh(k3l/2)

2Z3k2
4 sinh(k2l/2), M25Z3k1

4 sinh(k1l/2)2Z1k3
4 sinh(k3l/2),

M35Z1k2
4 sinh(k2l/2)2Z2k1

4 sinh(k1l/2), and the unknowns
ki and f are obtained from

Xi~ f a61h1B2ki
2!1 f Qi50 ~42!

and

(
i 51

3

MiF ~ f a61h!kiXi cosh
ki l

2
1

2 f

l
Qi sinh

ki l

2 G50.

~43!

Equation~42! is a sixth-order polynomial ink and gives the
six roots of the form6ki . In the domain of the parameter
chosen by us, the rootski were either imaginary or real. W
have to find thatf that fixes these roots as well as satisfi
-

s

-

s

Eq. ~43!. We make use of the Rayleigh criterion to find th
suitable solution, that is, we choose the set of roots with
largest value off .

With the onset of instability, there exists curvature disto
tion of the layers and flow along the layer and normal to
layer, that is, along bothX and Z axes. Transverse perme
ation flow normal to the layers is essentially coupled to la
distortions. It can be seen that our results have a differ
structure when compared with the earlier results@8,11#.
There exists analytical solutions to the linear equations,
isfying the boundary conditions with two real values ofk and
an imaginaryk. This is not surprising since the inclusion o
layer distortions introduces additional length scales ass
ated with permeation. It should be noted that there are n
three wave numbers as compared to one in the previous s
ies. The previous investigations have noted that the solut
are physical only within a range of values of the paramete
Due to the complexity of Eqs.~42! and~43!, we are not able
to derive an analytical expression for such a range. Par
eters outside this range are not considered since they lea
the unphysical answer off being positive even for zero field
i.e., the initial bookshelf state would be ‘‘mechanically u
stable’’ even with no magnetic field present. With the sa
values of the parameters, the growth ratef deduced by our
theory is larger than that of the previous work@8# in all
cases, but whether the increase off is due to the additiona
resistance provided by layer curvature or it is just a con
quence of the extra viscosity coefficients that exist in o
general theory is not clear.

The other important consequences of our analysis are
following

~i! We note that the distortion of thec vector has similar
features to those as found in earlier studies@8#. That is, the
effects of backflow become important at higher values of
field and the variation of the backflow effects with a partic
lar ratio of the material parameters is as in earlier wo
@8,11#. Similarly, the imaginaryk saturates with the field at a
particular value. This is surprising in view of the fact that t
governing equations~42! and ~43! are very different in the
present problem. With a strong field, thef profile shows the
interesting feature of having an opposite twist near the pla
and near the center. The profiles of thef distortions for two
different h (5xaH2) values are shown in Figs. 2~a! and
3~a!.

~ii ! It has been generally assumed in previous investi
tions that the flow in the direction normal to the layers
negligible when compared to that parallel to the layers, d
to a large viscosity in that direction. This is a reasona
approximation at low fields. Even our calculations of sca
velocities as shown in Figs. 2~b! and 2~c! show this. How-
ever, we find that as the field isincreased, the transient flow
velocity in the two directions can becomecomparable. This
is apparent in the scaled velocities shown in Figs. 3~b! and
3~c!. It should be remembered that the amplitude of the p
files cannot be extracted from this theory just as the am
tude of distortion in a Fre´edericksz transition is not obtain
able from a linear theory. It is to be mentioned that o
calculations are for certain assumed values for the par
eters since experimental values are still lacking. Apart fr
this, it should also be noted that the symmetry of the eq
tions does not allow the flow along the layer normal to
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FIG. 2. The thresholdhc for the instability ishc.10 ergs cm23. Here h550 ergs cm23. The separation between the plates isd
51023 cm. The parameters arelp510214 g21 cm3 sec,A215331026 dyn, B251026 dyn, a152 P, a255 P, a352.3419 P,a451 P,
a551.1169 P, anda6521.01 P. At this value of the field, it can be seen that thef profile is hardly affected by the ‘‘backflow.’’ The laye
distortion is also small. The velocity normal to the layers is much smaller than that along the layers.~a! f, ~b! vx , ~c! vz , and~d! u. Here
f,vx ,vz andu have been normalized byh1 ,m2 ,m2, andj2, respectively, to give dimensionless quantities. In this case,f 549.5760 sec21,
andk1d566.2985i , k2d560.6422, andk3d56122 474.4871, wherei 5A21.
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plug flow. It can be seen that iff is an even function ofy,
then the other quantitiesvx , vz , andu will be odd functions
and these features are clearly shown in Figs. 2 and 3. H
ever, for practical situations, the other permitted solut
with odd f and evenvx , vz , andu are improbable.

B. Flow induced instabilities

It has been shown@4,12# that in the shear flow with one
plate moving relative to the other, the stationary state, w
the layers are parallel to the plates, hasc either parallel or
antiparallel to the direction of main velocity provided there
no surface anchoring ofc. Further, which directionc adopts
depends on whether the product of the shear rate and a
tain viscosity coefficient is positive or negative. On the oth
hand, when the layers are perpendicular to the plates and
shear plane is parallel to the layers, we get a different
-
n

n

er-
r
the
a-

tionary state. Herec is aligned everywhere at a particula
angle with respect to the flow direction providedc is not
anchored at the walls. This angle is called theLeslie anglein
the case of uniaxial nematic LCs. This state occurs o
when the ratio of certain viscosity coefficients is less th
one; otherwise the phenomenon of tumbling occurs whec
continuously rotates as we go from one plate to the oth
We consider here these geometries, but with surface anc
ing thus bringing in elastic distortions in thec vector and
consequently layers.

1. Shear plane normal to the layers

We consider the layers to be parallel to the plates. Thc
vector is aligned everywhere along theY axis, the direction
of shear flow. This state is described byc5(0,1,0) andv
5(0,2sz,0). The geometry is shown in Fig. 4. The hydrod
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FIG. 3. h5200 ergs cm23, and the rest of the parameters are the same as in Fig. 2.~a! f, ~b! vx , ~c! vz , and~d! u. It can be seen in
~a! that the orientation of thec vector at the walls is opposite to that within the bulk. From~b! and~c! it can be seen that the velocities a
comparable. The normalization of the quantities is as described in Fig. 2. In this case,f 5602.3026 sec21, k1d568.9062i , k2d5

63.1336, andk3d56122 474.4866, wherei 5A21.
i
e

tio
e

ear
ast
nail
namic equations indicate that there exists an instability
this case. To describe the onset of the instability, we und
take a linear stability analysis. We assumev
5„2vx(z),2sz,0… and c.„f(z),1,0…. The hydrodynamic
equations do not lead to either layer distortion or permea
flow. As usual, we assume aef t time dependence. Then th
relevant equations are

~ f b12b2s!f ,z1b3vx,zz50, ~44!

B3f ,zz2~b1s2 f b4!f2b1vx,z50, ~45!

whereb15g2, b25a61a9 , b35a21a4, andb45g1. We
impose a no-slip condition forv and rigid anchoring forc at
the boundaries. The solution takes the form

f5AFcoskz2cosk
l

2G , ~46!
n
r-

n

FIG. 4. Schematic representation of the geometry with sh
flow of the layers that are parallel to the walls and are sliding p
each other. The shear plane is perpendicular to the layers. The
representation is used and the nail head indicates that thec vector
goes into the plane of the paper.
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vx5BFsin kz2
2z

l
sin k

l

2G , ~47!

with B52A(lb12b2k)/b3k. The values ofk and f are ob-
tained from

sb1~b1
22b2b4!F12

2

kl
tank

l

2G5B3k2Fb3b41
2

kl
b1

2tank
l

2G ,
~48!

f ~b3b41b1
2!5b3FB3k21b1sS 11

b2

b3
D G . ~49!

For s.0 (s,0), there will be an instability above a thres
old value only ifb15g2,0 (b1.0).

Above this threshold shear there exists atransverse flow
vx , but unlike in the Fre´edericksz transition, this isnot a
transient phenomenon. Also, well above the threshold, th
twist distortion of thec vector near the center is opposite
the twist near the plates. A schematic representation of s
a c vector distortion is depicted in Fig. 5. When thec vector
is aligned everywhere along theX axis with an imposed
shear flow in theY direction, there is no threshold for insta
bility.

2. Shear plane parallel to the layers

In this case, the layers are normal to the plates in
bookshelf geometry as shown in Fig. 6 and the shear plan
parallel to the layersv5(2sy,0,0) andc5(cosf,sinf,0).
With u g1 /g3 u,1 and noc vector anchoring at the walls, w
can readily verify that the continuum equations lead to
shear-independentc vector orientation given by

cos 2f052
g1

g3
. ~50!

FIG. 5. Schematic representation of the distortion inc associ-
ated with the geometry described in Fig. 4. It can be seen tha
twist distortion near the walls is opposite in a sense to the tw
distortion near the center.
ch

e
is

a

In this flow, the layers are flat and parallel toX-Y plane. It is
easy to see that this simple solution is realizable with
same surface alignment ofc5(cosf0,sinf0,0) at the walls.
Hence, at the boundary and elsewhere, thec orientation is
c5(cosf0,sinf0,0). Here we examine the stability of thi
solution. We shall assume spatial variations only along thY
direction. The analysis is similar to that in field induced i
stabilities. We takev5(2sy12vx ,0,2vz) and c5„cos(f0
1f),sin(f01f),0…. Once again the instability involves a dis
tortion in thec vector and also distortion of the layers due
transverse permeation flow given byvz . It should be noted
that the velocity along the direction of shear will not b
linear, but corrected by a nonlinear function. To estimate
threshold shear ratesc we assume that the perturbations ha
an ef t time dependence. The instability is assumed to
stationary whereby the principle of exchange of stabilities
valid and f 50 at threshold@20#. The linearized hydrody-
namic equations are

sc1u,yy1c2vx,yy1sc3f ,y1c4vz,yy50, ~51!

sc5u,yy1c6vx,yy1sc7f ,y1c8vz,yy1c9u,yyyy50, ~52!

22vz5lpc9u,yyyy, ~53!

sc10u,y1sc11f1c12vz,y1c13f ,yy50. ~54!

Taking w15sinf0 and w25cosf0, c152g2w122a8w1

23a10w1w2
2, c252g3(w2

22w1
2)2g1/21a21a6

12a13w1
2w2

2, c354g3w1w214a13w1w2(w2
22w1

2), c4

5a8w22(g2/2) w21a10w2w1
2, c552(g32a61a9

22a13w1
2)w1w2, c652( g2/2) w2, c75(g2/2) w12a8w1

12a10(2w1w2
22w1

3), c85a21a41(a61a9)w1
2, c95

2(A11w1
2w2

21A21w2
41A12w1

4), c105g2w1, c11524g3w1w2,
c125g2w2, andc135B1w1

21B2w2
2.

Here we have neglected the elastic coupling between
tortions in thec vector and those of the layers, i.e.,C250.
These equations are similar to Eqs.~31!–~34! and the solu-
tions for vx ,vz ,f, and u are of the same form. The two
relations that yield the threshold shear are

he
t

FIG. 6. Schematic representation of the geometry with the sh
flow along the layers that are perpendicular to the walls. The sh
plane is parallel to the layers. Here we show the undistorted sam
with the wall anchoring ofc5(cosf0,sinf0,0).
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s~c2c72c3c6!@sc102
1
2 lpc9c12ki

4#2~sc111c13ki
2!@s~c2c5

2c1c6!1c2c9ki
22 1

2 lpc9~c2c82c4c6!ki
4#50, ~55!

(
i 51

3

PiQiRi50, ~56!

where Pi5sc102
1
2 ilpc9c12ki

4 , Ri5(2/l )sinh1
2kil

2@sc11/(sc111c13ki
2)#kicosh1

2kil, Q15Z2k3
4 sinh 1

2k3l

2Z3k2
4 sinh 1

2k2l, Q25Z3k1
4 sinh 1

2k1l2Z1k3
4 sinh 1

2k3l, Q3

5Z1k2
4 sinh 1

2k2l2Z2k1
4 sinh 1

2k1l, with Zi5ki cosh1
2kil

2(2/l )sinh1
2kil. From these equations we can show that

threshold shear rate varies inversely as the square of
sample thickness andincreaseswith increasinglp . The lat-
ter implies that as the viscosityreducesin the Z direction, a
larger shear rate is required to make the stationary state
stable. It should be emphasized that here also the transv
permeation flow and layer curvature arenot transientin this
flow induced instability.

C. Poiseuille flow

1. Inlet section

In the classical Poiseuille flow, liquid flows into a cap
lary or the space between two parallel plates from a pres
head. The liquid enters with nearly a flat profile. A bounda
layer starts to develop at the walls at the entry point. As
liquid flows down, the boundary layer thickness contin
ously increases. A point downstream will be reached wh
the boundary layers with their nearly parabolic velocity p
files meet or crossover at the center. It is only after this po
the velocity profile is stationary and becomes symmetrica
parabolic. Over the distance from the entry point to t
crossover point, called theinlet section, the velocity profile
over the cross section continuously changes as we go d
the tube. Hence, in the inlet section, the liquid in the cen
region is continuosly accelerated and that at the walls is
ways at rest.

We present a simple analysis to estimate the length of
inlet section. We consider the case where the smectic la
are parallel to the plates that are in theX-Y plane. Further,
the velocity field is described byv5(vx,0,vz). The following
equations govern the flowsvx andvz @12#:

]vx

]x
1

]vz

]z
50, ~57!

]p

]z
52

vz

lp
, ~58!

rS vx

]vx

]x
1vz

]vx

]z D52
]p

]x
1h

]2vx

]z2
. ~59!

Hereh is the effective coefficient of viscosity andlp is the
permeation constant. We can estimate from~57!–~59! the
boundary layer thicknessd up to which the transverse pre
sure gradient extends. We findd to be a function of the
distancex from the edge of the plate. Let the flow at th
e
he

n-
rse

re

e
-
re
-
t

y
e

n
l
l-

is
rs

center beV0. Then, from the continuity equation, a roug
estimate givesvz5V0d/x. Then, from Eq.~58! we get the
pressurep, p5V0d2/xlp . Equation ~59! simplifies to x2

22rdx2d4/k250, where r 5dV0r/h and k5Alph, the
length scale introduced by permeation effects. Thus we
for the length of the inlet sectionL,

L5 l FR1
l

k
A11r2V0

2 k2

h2G , ~60!

whereR5rV0l /h is the Reynold’s number andl the sepa-
ration between the plates. From this it can be seen that
get the length of inlet section as 2lR for ordinary fluids in
the limit k→`. Since viscosity dominates flows at smalll
andV0, this inlet section is comparable tol and depends on
main flow velocity V0. In smectic LCs,k is very small,
being of the order of the layer thickness. Then the inlet s
tion is given by

L.
l 2

k
. ~61!

This is invariablyvery largecompared tol and is indepen-
dent of the main flow velocityV0. If l;1023 cm,L;10 cm.
Hence actual experimental results in short tubes are no
ally representative of the steady Poisseuille flow. This res
is true of all smectic LCs in general. In this context, it
relevant to recall here a recent calculation by Walton, Ste
art, and Towler@21# on the flow past finite obstacles in sme
tic liquid crystals. This calculation is an application of th
theory of hydrodynamics of smectic-A LCs, i.e., it explicitly
incorporates the permeation process, which is an esse
feature of flow past obstacles.

2. Hall effect

In the case of uniaxial nematic LCs, it is known that the
exists in a planar Poiseuille flow a transverse pressure gr
ent when the director is held at an angle, say, by an infinit
strong magnetic field, with respect to plane of shear. In t
section we shall briefly describe an analogous situation
Sm-C LCs.

We consider the geometry of Fig. 6. The stateN
5(0,0,1), c5(cosf,sinf,0), andv5„2vx(y),0,0… is stable
below a threshold shear if we assume that a strong magn
field alignsc at a particular anglef. Then

P,x5
d2vx

dy2 Fa21a612a13 cos2 f sin2 f2
g1

2

2g3 cos 2fG , ~62!

P,z5cosf
d2vx

dy2 Fa82
g2

2
12a10 sin2 fG . ~63!

It can be seen that there exists a transverse pressure gra
P,z whenever thec vector is not alongY, i.e., f5 1

2 p, or at
a particular anglef5sin21@A(g222a8)/4a10#. The addi-
tional feature compared to nematic LCs is that there are th
possibilities in view of Eqs.~28! and ~29!: ~i! A pressure
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gradient develops along theZ direction without any lattice
dilatation or flow alongZ, ~ii ! the pressure gradient is ac
companied by layer dilatation, but without any macrosco
flow along the layer normal, and~iii ! the pressure gradien
leads to layer dilatation and flow along the layer normal.

In the absence of an external field also, the vector w
align, but along the Leslie anglef0. Hence the transvers
pressure gradient exists even in such a situation, unlesf0
actually happens to be equal to 1

2 p or
sin21@A(g222a8)/4a10#. This type of Hall effect is peculiar
to Sm-C LCs.

IV. CONCLUSION

We have developed a macroscopic hydrodynamic the
of Sm-C liquid crystals. This is described by the hydrod
namic variables, viz., the material density, the fluid veloci
the energy density, the scalar variable that describes the
ering, and the vectorc. The asymmetric stress tensor consi
of 16 shear viscosity coefficients, three of which are ass
ated with dissipative torques. Our theory agrees with the
lier theories@1,12# where a symmetric stress tensor has be
assumed. In the study of the reorientation dynamics of
director in an external field, we showed that assuming
layers to be flat or the velocity normal to the layers to be z
leads to an overdetermined set of equations. There e
coupling between curvature of the layers and orientation
t.
c

ll

ry

,
y-

s
i-
r-
n
e
e
o
ts
f

the director that alters the director profile. In the transie
stage, layer distortion can arise even in the absence of
coupling parameter. The velocity normal to the layers c
become comparable to that along the layers. Then, we c
sideredc vector instabilities in shear flows. When there is
shear flow with the layers slipping past each other and
flow is along the direction ofc, there is a threshold shea
above which the uniformly aligned Sm-C LC becomes un-
stable. This leads to a transverse flow along the layers.
twist distortion of thec vector near the center is opposite
the twist near the plates. When the shear is along the lay
there develops again above a threshold shear an instabili
the uniform sample withc vector at the Leslie angle. Thi
instability has transverse permeation flow and layer cur
ture. Even below these threshold shears, these Poise
flows are associated with some special features. In the
of layers sliding past each other, the length of the inlet s
tion is very large compared to the sample thickness an
independent of main flow velocity. In the case of flow a
shear parallel to the layers, a transverse pressure gra
exists even in the absence of an aligning field and this
peculiar to Sm-C LCs.
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