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Following the Ericksen-Leslie approach, we formulate a complete nonlinear macroscopic theory of the
isothermal hydrodynamics of smectdiquid crystals. We assume an asymmetric stress tensor and incorpo-
rate the essential features of a hydrodynamic theory of a smectic phase, i.e., permeation and variations in layer
spacing. Using Onsager’s reciprocity relations, we find that entropy production is described by 16 viscosity
coefficients and a permeation constant associated with the dissipative dynamics of the layered system. We
study the reorientation dynamics of tb@ector under the destabilizing influence of an external field. We stress
that permeation is important and that transverse flows along and normal to the layers exist. We have also
studied certain instabilities that can arise in shear flows. As a consequence of permeation, in Poiseuille flow
with the layers parallel to the plates, we find that the length of the inlet section can be very large being many
times the lateral dimension. When the layers are perpendicular to the plates, an analog of the nematic Hall
effect is shown to exist even in the absence of an aligning external [f&l€63-651X98)03305-4

PACS numbgs): 61.30-v, 03.40.Gc, 47.20-k, 83.20—d

I. INTRODUCTION sical Newtonian mechanics. We assumeaaymmetricstress
tensor and incorporate the essential features of a hydrody-
The hydrodynamics of smectfe-(Sm-C) liquid crystals namic theory of a smectic phase, that permeationand
(LCy) is different because it incorporates the flow of a fluid variations in layer spacingFirst, we present an outline of
as in ordinary fluid mechanics, the dynamics of oriented methe complete nonlinear macroscopic theory of the isothermal
dia as in nematic LCs, and also the dynamics of layerediydrodynamics of SnG LCs that can be applied even to
media such as smect&-LCs. As a consequence of the cou- chiral smectic€ (Sm-C*) LCs. Our main aim in proposing
pling that exists between these, even in the linear regime, thihis theory is to systematically derive the equations of mo-
theory is complex and theoretical investigations on macrotion by generalizing forces and torques. Using Onsager’s
scopic flows have been very limited. In 1972, Martin, Parodi,reciprocity relations, we find that the entropy production in a
and PershariMPP) [1] formulated a linearized hydrody- compressible system of monoclinic symmetry embodying
namic theory of SnE LCs that has been very successful in dissipative torques is described by 16 viscosity coefficients
the study of fluctuations. A more complete nonlinear versiorand a permeation constant arising from the dissipative dy-
of this theory has been developed by othE2s3] and the namics of the layered system. It may be mentioned in pass-
results follow along the lines of MPP. The stress tensor isng that LSN’s theory has 20 viscosity coeffients for the
assumed to beymmetricand the phenomenon permeation incompressible case. Our theory incorporates coupling be-
is also described when there exists flow in a direction normatween the different hydrodynamic variables, viz., velocity,
to the layers. However, these theories have not been used layer spacing, and thevector. It is a covariant description in
describe macroscopic flows. Nearly 20 years later, Lesliethe sense that the constraints of the system have been incor-
Stewart, and Nakagaw@SN) [4,5], following the approach porated and the theory is not limited to mere perturbations of
of Ericksen and Lesli¢6,7] in the formulation of the hydro- planar structures. The main problem regarding experimental
dynamics of uniaxial nematic LCs, developed a theory thatnd theoretical investigations of S&-LCs has been the
allows for nonlinear coupling between curvature of the lay-complexity arising from such couplings. Focal conics, chev-
ers, director orientation, and macroscopic flow. They use anon textures, and other topological defects that hamper ex-
asymmetricstress tensor, but permeation and layer dilatatiorperimental work require the complete nonlinear theory for
or compression are not included in their theory. Hence thestheir desciption. We develop a linear analysis of instabilities
two approaches are different. The theory of MPP has beethat bring out the intimate coupling between the hydrody-
used to describe fluctuations and the theory of LSN has beamamic variables. The onset of such instabilities might lead to
employed recently in describing reorientation dynamics andhe generation of the above-mentioned topological defects.
the effects of “backflow”[8-11]. To reduce the complexity of the problems, the earlier studies
Here we formulate a macroscopic hydrodynamic theory5,8—10 assumed thati) the layers are flat and even intro-
based on the principles of classical mechanics that generaliziiced external counter torques to ensure such a condition
concepts of linear and angular momentum employed in clasand (ii) the flow along the layer normal is negligible, thus
neglecting permeation. Though these assumptions appear
reasonable, they lead to mathematical inconsistencies and an
*Electronic address: sreesuku@rri.ernet.in incomplete description of even well-known instabilities such
Electronic address: gsr@rri.ernet.in as the Fredericksz transition. We have studied certain field
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and flow induced instabilities and our analysis leads to &yrfaces withy(r)=const. A deformed smectic stucture,
more complex behavior in each case. Incidentally, everith theZ axis normal to the undeformed layers, is described
though we work with an asymmetric stress tensor, the linearby y(r)=z—u(r).
ized version of our theory is similar to that of MR&s in the The hydrodynamic equations are always in terms of the
case of uniaxial nematics LCapart from a difference in the hydrodynamic variables. These variables are characterized
choice of forces and fluxes in developing the constitutivepy slow decay times proportional to some power of their
equations. This choice merely depends on the type of th@avelengths. The number of such variables is determined by
problem one is tackling. For instance, the Ericksen-Leslighe sum of the number of conservation laws and the number
approach in uniaxial nematics LCs is instructive when onesf “continuous broken symmetries.” As in ordinary fluids,
considers field and flow induced instabilities; however,here also we have the density, the components of the veloc-
MPP’s theory is useful to study only small fluctuations andity, and the energy density as five hydrodynamic variables
wave propagatiofl2]. associated respectively with the conservation of the mass, the
The reorientation dynamics of the director under the demomentum, and the energy. In addition to these, we have
stabilizing influence of an external field is of paramount im-variables describing the broken translational invariance in
portance in modeling electro-optic devices. Recent workgne dimension, as described by the layering, and the broken
[8—10 emphasize the effects of backflow and point out thatrotational invariance of the directar, as described by a
transverse flow within the fluid layer alters the director pro-transverse twofold axis. These variables are, respectively, the
file. Barratt and Duffy[11] reanalyzed this problem and scalar variabley and the vectoc that is the projection of
showed that the earlier analyses lead to overdetermineghto the layers. The vectar is subject to the constraints
equations. These authors included flow in the direction norc.c=1 andc-N=0, whereN is the unit layer normal given
mal to the layers, but without incorporating permeation.py Vyl|Vy|. It may be remarked here that in the theory of
similar behavior. Since macroscopic flow normal to the lay-deformations. This by itself cannot explicitly take care of
ers involves the effects of permeation, the real dynamics igeneral layer deformations and the process of permeation.
different. We present preliminary investigations on macro-on, the other hand, our constraints @andN allow for these
scopic dynamics involving permeation. We point out thatprgcesses. It should be noted that in this hydrodynamical
transverse flows and flow normal to the layers that is couple@iescription of Smc LCs, a variation in the tilt ofn with
to the curvature elasticity of the layers are essential for gespect to the layer normal is not permitted. The macroscopic
complete hydrodynamic desciption of smectic LCs. We havgynamics of any system does not depend on whether the
also analyzed certain instabilities that could arise in sheagiress tensor is symmetric or asymmetric. We choose an

flows. Finally, we study Poiseduille flow in two geometries, 5gymmetric stress tensor since it is more appropriate to these
viz., with the layers parallel and perpendicular to the boundzystems that allow for internal torques.

ing plates. In general, in the standard discussion of Poiseuille
flow, we do not consider the process by which the fluid at- .
tains a steady state. This is invariably confined to a small A. Conservation laws

region called the inlet section at the entry point. Surprisingly, |n writing down the complete isothermal hydrodynamics
in the flow of smectics LCs, we cannot ignore in certainof Sm-C LCs, we consider a compressible material at each
geometries the length of the inlet section. We find that in thgyoint x, and also assume that the system has reached statis-
case of flow with layers slipping past each other, the lengthical equilibrium locally. The orientation of the directaris

of the inlet section is very large as a consequence of permepmpletely described by and N since the tilt ofn with
ation in the region of nonsteady flow. This result is true forregpect ta\ is nothing but the order parametgitt angle) of

all smectics LCs in general. In the case of Poiseuille flowihe Sme phase. The approach of LSN has been to consider
within layers, an analog of the nematic Hall effect, i.e., agm.c LCs as a biaxial system described byandN. Then
pressure gradient in a direction perpendicular to the veloCityorques on the system can be considered to consist of two
and the velocity gradient, exists even in the absence of afarts[13]. One part arises from the familiar moment of linear
external field. This is peculiar to S@-LCs and does not  momentum of the fluid particle, while the other part is due to

exist in SmA LCs. torques that changeandN. SinceN is completey described
by V! V|, generalized torques leading to changell ican
Il. HYDRODYNAMICS OF SMECTIC- C LCs be equivalently described by generalized forces resulting in

second-order gradients i#r. An example of this is in the
A Sm-<C liquid crystal is a layered structure in which the equations of equilibrium of smectis-LCs. Here, withy as
director n, which represents the preferred direction of thethe hydrodynamic variable, the stress tensor does not need to
local molecular orientation, is everywhere inclined at thehaye an antisymmetric part because torques are totally due to
same angle with respect to the layer normal. These liquighoment of linear momentum of fluid particles and the con-
crystals can be described by a density variation along thgeryation of angular momentum is implicit. However, in Sm-
layer normal, C LCs there is an additional internal degree of freedom due
to c. The difference between the total angular momentum
p=pot[ép expiqsytc.cl, (1) and the moment of linear momentum can be attributed to an
internal angular momentum leading to changes indkec-
where qs=27/d, with d the layer spacing andp is the tor. In SmC LCs, the equation for the conservation of this
amplitude of the density variations. The smectic layers ar@ngular momentum acquires an independent status. This
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leads, in SmE LCs, to an equation that is similar to the where

Oseen equation of nematic LCs.

At any timet, the conservatiorifor a volumeV of the
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ergy, and angular momentum, respectively, leads to thg negilgible. In other words, we ignore this inertia term in all
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our future discussion.

If Sis the entropy per unit mass at an absolute tempera-
ture T, then the Helmholtz free energy per unit masg-is
=U-TS. According to thermodynamics, the rate of en-

tropy generation, is always positive. At constant temperature,
this means

pTS=pU—pF=0. (12)

B. Constitutive equations

We assume thdt is a single-valued function of the vari-
ablesp,#;,N;,N;;,ci, andc; ;. Using the chain rule of
differential calculus to expan& and making use of Lan-
grange multipliers to express the constraints=1, c-N
=0, and the fact tha= Vy/| V|, we have
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where\,vy, andB; are the Langrange multipliers. Then it is

easy to show that

wherep is the densityD/Dt is the material derivativej A,
is a vector representing the area element, @ds the vol-
ume element. Furtheo, ,f; o} ,G;,g;, andm;; are, respec-
tively, the components of the velocity, force, stress tensor,
external director body force, intrinsic director body force,
and director surface stress tensor. In &), U is the internal
energy per unit mass, anpd is the moment of inertia per unit
mass. This moment of inertia depends only on the degree of
orientational order and hence is a constant at a given tem-
perature and pressure.

With Reynold’s transport theorem and Gauss’s theorem,
Egs.(2)—(6) imply
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entropy generation is
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) JF P - JE . C. Free energy and dissipative part of the stress tensor
vaps dv= ﬁdA{—(pa%i * |l hk>¢_p0Nj'iNi} The free-energy density and the dissipative part of the
stress tensor should be invariant under the transformations:

JF N——N andc— —c . The free energy densitlf’' =pF of

p Ay Sm-C satisfying this constraint has been worked out by Na-
' kagawa[16]. It has the form
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tions, W;; =W;; . Hence, from Eq(11) we get the relation +By3(c-Ve-b)(N-Ve-b) - Cy(c-Va-b)(c-Ve-b)
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At this point, we recapitulate the interpretation of Kian +Np(b-Va:-N)(N-Ve-b,) (16)
and Parodi14] regarding the surface terms that appear in
Eq. (13). With layers parallel to a plane surface, the first termwhere a=V ¢ (a=N when there is no layer dilatation or
describes the effects due to an imposition of a dilatat@n contraction andb=NXc. When the variations are assumed
contraction of layers. When the dilatation is large, this pro- to be small, this reduces to the free-energy density of the de
cess leads to the creation of edge dislocations and then ti@ennes and Prostl2]. It should be mentioned in passing
number of layers in the system will not be conserved. Whenhat in this model of Nakagawd 6], instead ofVXN=0, it
the layers are normal to a plane surface, the second teris Vxa=0. This condition also precludes the existence of
leads to depinning of layers along the surface in order talislocations and in addition allows for a more general de-
relax their bending. The last term plays the role of a surfac&cription of layer distortions. We are adopting here the pro-
torque. We shall not deal with these surface terms any fureedure of Nakagawa.
ther since we are interested in problems wherein the number Then the entropy generation inequalitys) implies that
of layers is conserved and the surface torques and layer de-
pinning are considered to be absent due to boundary condi-

tions. Weinan[15], following Kléman and Parodi, has very JE  Puh\
recently developed a nonlinear continuum theory of smectic- {p:)\p( p—+ ki k) , (17
A liquid crystals. His derivation and interpretation of the Wi ¢l [

permeative force is similar to that presented in this paper.
The entropy generation in the bulk satisfies the inequality

where\, is a constant called the permeation constant intro-
duced by Helfrich[17] for layered systems. Equatiqi?)

) ) IF  PghY has the form of a continuity equation. Within the context of
pTS= crj’id”- + pa—d/_-l- W) continuum mechanics, Eql7) describes a situation in
o mE which any relative motion of the fluid particles with respect
L to the layers results in a distortion of the layers. Further, as
—Pigk(ci— wjjc;)=0. (15

Helfrich pointed ou{17], with the layers fixed at the bound-
aries, any flow normal to the layers would experience a large
The first term is associated with shape and volume changesscosity, and the velocity in that direction would be propor-
as in normal hydrodynamics, the second describes dissip&ional to the pressure gradient just as in flow through porous
tive dynamics of the layered structure, and the third is due tenedia. With the layers fixed rigidly at the walls, a part of the
dissipative torques along the layer normal and acting on theressure gradient distorts the layers and the remaining part
c vector. It should be noted that torques on theector that  leads to fluid flow through a “fixed layered structure.” The
distort the layer are described by the second term and wpermeation constank, can be roughly estimated to be
have removed such contributions from the last ténot to )\pn~d2, wheren andd are, respectively, the viscosity co-
count the same thing twice, of couydgy making use of the efficient and the smectic layer separation. Roughy,
constraintc-N=0. ~108-10 g tcmds.
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Following the Ericksen-Leslie formalisii6,7], we write  \yherem, = Pik(ék_wkjcj) describes the relative rotation of

down the most general expressions &y andg; c with respect to the fluid due to torques alagnd has the
] tiesM;c;=M;N;=0. The most general expression for
=AM+ A d , 18 proper i i
i = ik Bjikm km (18) o, andg/ consistent with the symmetry of S@-.Cs, [Eq.
9/ =B;;M;+ Bjjdjx (19) (14)] and the Onsager reciprocity relations are

, Y2 Y3 Y1
o=~ 7(NJM|+N|M])_ ?(CjMi‘f‘CiMj)‘F ?(CjMi_CiMj)'i”aléijdkk"' azdij +a3(Nkdekm5ij +Nidekk)

Y1
+ a4(NjNpdim+ NiNpdj,) + @s(CkCmbimdij + CiCjdyi) + a6(CjCrdim+ CiCmdjm) + 7(Cjcmdim_cicmdjm)

Y2
+ a7(Nkadkm6ij + Nicjdkk+ Njcidkk) + ag(Nijdim+ Nicmdjm+ Nijdim+ chidjm) + 7(chjdim_ chidjm)
V3
+ Cl’g(NiCj + NjCi)Nkadkm+ ?(N]C, — Nicj)Nkadkm+ alO(NiCjCka+ NjCiCka+ CiCj Nkcm)dkm+ all(CiNj NkNm
Y2
+ Cj NiNkNm+ Ni NjCkNm)dkm+ ?(CINJ - CjNi)Nkdekm+ alzNiNj Nkdekm+ algciCjCkadkm, (20)
gi = ¥1iMi+ voNidi + y3Cidic - (21)
|
These expressions can now be compared with those of de Dp
Gennes and Pro$i2]. In principle, there is full agreement D—t+ka,k=0, (29
between our approach and that of de Gennes and Prost.
Duy ,
D. Linearized equations Pt - Pt o (26)
Before we tackle the various situations of macroscopic
flow, we will choose a suitable parametrization of the vari- Dvy Pty 5
ables and present the hydrodynamic equations in an appro- Pt ~ AR IOE (27)
priate form that is convenient to make a more complete com-
parison with the theory of MPP. Since we will be studying Dv, )
perturbations of a planar structure with the layer normal ini- Pt~ Petopt 5 (28
tially aligned along the&Z axis, we choose
— Jau oF
Yy=z—Uu(x,y,z). (22 o,
&t UZ P 5u ’ (29)

Then a suitable parametrization of the layer normal anatthe

vector is ) , _dF [ dF )
gyCX ngy 0—,¢ (a(ﬁ,J i ’ (30)
Ju Ju
N=| ==~ a_y’l ; (23)  whereP [=p?(dF/dp)] is the pressure and
SF (&F) (&F) (ﬂF) (aF
au au — == - = -2 .
c=| cos ¢,sin b, 2 COS P+ a—ysin ¢>), (24) ou  \aug) , \ Uy o Ny o dUxy) o

Written in this form, our theory is exactly similar to that of
where ¢ is the angle made by thevector with theX axis, = MPP apart from the fact that we have usedamymmetric
the direction of the undistorted vector. We take the free stress tensor. To summarize, the main features of our theory
energy density up to linear terms in the gradientsiadnd  are the following.

ignore terms such a&u/ dx;dz since the termjyu/ 9z would (i) We make use of an asymmetric stress tensor and show
be of the highest order. If linearized ih also, the expression that our theory does correspond to that of de Gennes and
reduces to that of de Gennes and Prost. Prost when the hydrodynamic equations are linearized,

Finally, the hydrodynamic equations become which was not possible with the theory of LSN.
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e Y tions. The velocity field is taken as=(v,0v,). Then the
T T relevant equations are
y = I/Z ’ . . . H X
———]—] e
— —— _ - / fald)’y‘i‘ azvxyyy‘i‘ agl}zﬁyy: 0, (31)
—
yeor2 I AT z fasd ytasvyyytasvzyy=Aalyyyyt Codyyy, (32
FIG. 1. Schematic representation of the geometry foefee fu=v,= =Np(Aalyyyyt Cadbyyy), (33

icksz transition.
fagp— AUy y~AgUzy= — he— Badb yy— Czu,yyy,
(ii) The theory is covariant in the sense that the constraint (34)
N-c=0 is imposed whereby simultaneous rotation®Ncind h _ _1
; o ere a;=— +v3)12, a,=5(as+ag—y3— y1/2), a
c do not cost energy. This allows for a general description o%’zv 1 ! (72t 7s) 2=32(axt ae~ 73— 11/2), 3

. . 20— y,), ay=— v,12, ag=3(ay+ ay), ag= and

zlcag—7%3), d4 Yols, ds= 3\ T ay), dg= V1,
large distortions of the vector and the layers. Our theory h=xaH?. xa is the diamagnetic anisotropy associated with
also allows for variations in layer spacing.

i p tion is included in the th the c vector. Here and in the rest of the paper we have used
(iii) Permeation is included in the theory. the notationg,,= d¢/dy and ¢ ,,= Pl oy,
Equations(31)—(34) have to be solved with the boundary

IIl. APPLICATIONS conditions (Z):UXZUZ:U:U'y:O at the plates. The last
o ) condition implies that the layers are clamped at the plates.
A. Field induced instabilities This condition of layer clamping takes care of one more

In recent times, there has been considerable int¢gest boundary condition necessary to completely solve the fourth-
11] in the dynamics of reorientation under the destabilizingorder differential equation. It should also be noted that if we
influence of a field. The interest has been spurred on by thassume the layers to be flat or the velocity normal to the
possibility of fast-switching electrooptic devices. Though welayers to be zero, we would get an overdetermined set of
shall be studying the effect of a magnetic field on a sampl€quations. This is true even if the coupling constant is non-
of aligned SmE LCs, the results can be extended to theeXxistent, i.e.C,=0. Hence the earlier result8,11] obtained
effect of an electric field on surface stabilized ion-free ferro-under such assumptions are not realistic. Our theory has cor-

electric liquid crystals. rected this error.
We consider the sample to be confined between plates at
y==(1/2) with the layers in the so-called bookshelf geom- 1. Effect of G,
etry, i.e., perpendicular to the plates and along X The term in the free-energy densi/, that involvesC,

plane. At the plates, the vector is considered to be rigidly s allowed by the symmetry of the system. It couples distor-
anchored along thX axis. The geometry is depicted in Fig. tions in thec vector with layer curvature. The equations of
1. A magnetic field is applied along thedirection and acts  equilibrium (33) and (34) couple these variables. We shall
as a destabilizing field oo provided we include the inherent now discuss the effects &, on the Freedericksz transition.
biaxiality of the system and the appropriate diamagnetic an- The solution that satisfies the equations of equilibrium
isotropy is positive. This is akin to the familiar splay rich and the boundary conditions is

Freedericksz effect in the homogeneous geometry of a nem-

atic. This instability occurs at a threshold fidtd . When the kl

sample “switches” to this state, thevector will develop a ¢:A( coshky— cosh2—>, (35
component along th¥ axis and there will be a transient flow

called “backflow” in the transverse direction, i.e., the 2y K

axis. It has been shown that as in nematic I[€8,19, here u=B(sinh ky— FSinhE) +Cy
also forH>H,, the effect of backflow is to alter the director

profile and the response time of switching during this tran-
sient statg8,11]. The linear stability analysis of these au- where B=—AC,/Axk, C:..(ZA(.:Z/AﬂkIZ).[k coshid’2)
thors[8—11], which is similar to that used in uniaxial nem- '—(2/I)S|nh'(kll2')], apd the critical field at.wh|ch the instabil-
atic LCs, assumes that the layers are flat and the existence &f Zsegs in is given by the relationh.=—(AB;

flow is along theX direction. Though flow in the direction — C2)Kc/Az1, v2vhere ke Is a 25°|Ut'°” of the2 transcendental
normal to the layers has also been considéiad, since the ~€quation  1Z35+ (Ay;B,—Cj)(kcl)?=[24C5/k I Jtanh/
effects of permeation have been ignored by Barratt and)- It is to be noted that the sign @, does not change the
Duffy' their ana|ysis is incomp|ete_ We have incorporatedend results and that the thresholdéslucedbecause of this
permeation and reanalyzed the problem. We assume that t§€upling parameter. Hence, when distortions in the orienta-
hydrodynamic variables are functions ¥f and vary with tion are coupled to layer curvature, the bare elastic constant
time ase', wheref is the inverse of a relaxation time. When B: is replaced by a smaller effective elastic cons@§it'*°.

f>0, the perturbation grows and the stationary state beAnother feature of this solution is that if the wave numkgr
comes unstable. The acceleration terms associated with ma(k is imaginary can be extracted experimentally and if it is
roscopic flow may be neglected compared to viscous termsiot equal towi (i=+/—1), it will unequivocally establish
Since we are interested in the growth of the instability, wethat C,#0. An indication of layer curvature in the static
shall be concerned with the linearized force and torque equasituation also establishes the same result.

2

I
y= Z)' (36
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2. Dynamic response
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Eq. (43). We make use of the Rayleigh criterion to find the

To bring out the main features of the dynamics of rec)ri_suitable solution, that is, we choose the set of roots with the

entation we need not explicitly include, since it only cor-

largest value of.

rects slightly the end results and the form of the solution is With the onset of instability, there exists curvature distor-

not altered. A solution of the differential equatiof®d)—(34)

tion of the layers and flow along the layer and normal to the

satisfying the already specified boundary conditions is ob!ayer, that is, along botlX and Z axes. Transverse perme-

tained by assuming the ansatz

3
kil
b=, ﬂi( coshkiy—coshz'—),
=

3 2y kil
V=2, ,ui(sinhkiy— I—sinhz'—),
=1
3
2 kil
vZIE vi(sinh kiy— —ysinh'—),
=1 | 2
3
2 kil
u=, §i<sinhkiy— l—ysinhz'—).
=

Then we find that

f
M= [(aias—agay)(f+ )\pA21ki4) —a,Ak i,
1M

(37)
f 4
ViT T [(azaz—ajas) (F+ N Axki) ], (38
17N
3 f ( ) (39
= — ——(ayay—a;as) 7,
i ki X 204 193) 7
X3 ky M,
12=Y kg M, T (40)
X2 ka M
3 Kg M3 (a1)

ﬂszx_lk_lM_l”ll,

where  X;=(azas—a3)(f+\pAxKS) — aAxk?, Zi
=k; coshil/2)— (2/d)sinhl/2),  Q;=(a’as—2a;asa,
+,85) (f+ N pAyki') —adAk?, M ;= Z,k3 sinh(kl/2)

— Z3k3 sinh(k,l/2), M,=Zk] sinhk,1/2)— Z,kj3 sinhksl/2),
M3=2Z,K3 sinh,l/2)— Z k] sinhfl/2), and the unknowns
k; andf are obtained from

Xi(fag+h+Byk?) +fQ;=0 (42)
and
3
kl 2f kil
> M| (fag+h)kX; coshy-+ - Q; sinho-|=0.
i=1
(43

Equation(42) is a sixth-order polynomial ik and gives the

ation flow normal to the layers is essentially coupled to layer
distortions. It can be seen that our results have a different
structure when compared with the earlier resuigsll].
There exists analytical solutions to the linear equations, sat-
isfying the boundary conditions with two real valueskadnd

an imaginaryk. This is not surprising since the inclusion of
layer distortions introduces additional length scales associ-
ated with permeation. It should be noted that there are now
three wave numbers as compared to one in the previous stud-
ies. The previous investigations have noted that the solutions
are physical only within a range of values of the parameters.
Due to the complexity of Eqg42) and(43), we are not able

to derive an analytical expression for such a range. Param-
eters outside this range are not considered since they lead to
the unphysical answer dfbeing positive even for zero field,
i.e., the initial bookshelf state would be “mechanically un-
stable” even with no magnetic field present. With the same
values of the parameters, the growth ratdeduced by our
theory is larger than that of the previous wdr&] in all
cases, but whether the increasefds due to the additional
resistance provided by layer curvature or it is just a conse-
quence of the extra viscosity coefficients that exist in our
general theory is not clear.

The other important consequences of our analysis are the
following

(i) We note that the distortion of thevector has similar
features to those as found in earlier studi@s That is, the
effects of backflow become important at higher values of the
field and the variation of the backflow effects with a particu-
lar ratio of the material parameters is as in earlier works
[8,11]. Similarly, the imaginark saturates with the field at a
particular value. This is surprising in view of the fact that the
governing equation§4?2) and (43) are very different in the
present problem. With a strong field, tileprofile shows the
interesting feature of having an opposite twist near the plates
and near the center. The profiles of thalistortions for two
different h (=x,H?) values are shown in Figs.(@ and
3(a).

(i) It has been generally assumed in previous investiga-
tions that the flow in the direction normal to the layers is
negligible when compared to that parallel to the layers, due
to a large viscosity in that direction. This is a reasonable
approximation at low fields. Even our calculations of scaled
velocities as shown in Figs.() and Zc) show this. How-
ever, we find that as the field iscreased the transient flow
velocity in the two directions can beconsemparable This
is apparent in the scaled velocities shown in Figh) 2ind
3(c). It should be remembered that the amplitude of the pro-
files cannot be extracted from this theory just as the ampli-
tude of distortion in a Fredericksz transition is not obtain-
able from a linear theory. It is to be mentioned that our
calculations are for certain assumed values for the param-

six roots of the formxk; . In the domain of the parameters eters since experimental values are still lacking. Apart from
chosen by us, the roots were either imaginary or real. We this, it should also be noted that the symmetry of the equa-
have to find thaff that fixes these roots as well as satisfiestions does not allow the flow along the layer normal to be
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FIG. 2. The thresholdh, for the instability ish,=10 ergs cm 3. Here h=50 ergs cm 3. The separation between the platesdis
=103 cm. The parameters avg,=10 ** g~* cm® sec,A,;=3x10 ° dyn, B,=10 ° dyn,a,=2 P,a,=5 P,a;=2.3419 Pa,=1 P,
as=1.1169 P, andig= —1.01 P. At this value of the field, it can be seen that¢hprofile is hardly affected by the “backflow.” The layer
distortion is also small. The velocity normal to the layers is much smaller than that along the (ayers(b) vy, (c) v,, and(d) u. Here
¢,vy,v, andu have been normalized by, , 1, , 1, andé&,, respectively, to give dimensionless quantities. In this chse19.5760 sec?,
andk,d=+6.2985, k,d=*+0.6422, anckzd= *+ 122 474.4871, where= - 1.

plug flow It can be seen that i is an even function of,  tionary state. Here is aligned everywhere at a particular
then the other quantitias,, v,, andu will be odd functions  angle with respect to the flow direction providedis not
and these features are clearly shown in Figs. 2 and 3. Howgnchored at the walls. This angle is called teslie anglen

with odd ¢ and everv,, v,, andu are improbable. when the ratio of certain viscosity coefficients is less than
one; otherwise the phenomenon of tumbling occurs wiere
B. Flow induced instabilities continuously rotates as we go from one plate to the other.

We consider here these geometries, but with surface anchor-
ing thus bringing in elastic distortions in tfevector and
consequently layers.

It has been showf¥,12] that in the shear flow with one
plate moving relative to the other, the stationary state, whe
the layers are parallel to the plates, lwasither parallel or
antiparallel to the direction of main velocity provided there is
no surface anchoring af. Further, which directiort adopts
depends on whether the product of the shear rate and a cer- We consider the layers to be parallel to the plates. @he
tain viscosity coefficient is positive or negative. On the othervector is aligned everywhere along theaxis, the direction
hand, when the layers are perpendicular to the plates and tleé shear flow. This state is described by (0,1,0) andv
shear plane is parallel to the layers, we get a different sta=(0,25z0). The geometry is shown in Fig. 4. The hydrody-

1. Shear plane normal to the layers
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il

(b)
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i

Vel Hy

-204

-40+

FIG. 3. h=200 ergs cm?3, and the rest of the parameters are the same as in Fig) @, (b) v, (¢) v,, and(d) u. It can be seen in
(a) that the orientation of the vector at the walls is opposite to that within the bulk. Fr@mand(c) it can be seen that the velocities are
comparable. The normalization of the quantities is as described in Fig. 2. In this fca662.3026 sec!, k;d=*8.9062, k,d=

+3.1336, andk;d=*+122 474.4866, where=\—1.

namic equations indicate that there exists an instability in

this case. To describe the onset of the instability, we under-

take a linear stability analysis. We assume&

=(2v4(2),2s20) and c=(¢4(2),1,0). The hydrodynamic

equations do not lead to either layer distortion or permeation

flow. As usual, we assumeei! time dependence. Then the

relevant equations are
(fby—Db,s) ¢ ,+bgvy ,,=0, (44)
B3¢ ,,— (b;s—fby)p—Dbyv, ,=0, (45)
whereb;=1vy,, by=ag+ ag, bg=as+ a,, andb,=v,. We

impose a no-slip condition for and rigid anchoring foc at
the boundaries. The solution takes the form

|
coskz—cosk—|, (46)

=A 5

V=2sz J’i

2=1/2 —° }ii}

7777777 A4

T T A
T T

celiz L ST T

FIG. 4. Schematic representation of the geometry with shear
flow of the layers that are parallel to the walls and are sliding past
each other. The shear plane is perpendicular to the layers. The nail
representation is used and the nail head indicates that eetor
goes into the plane of the paper.
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z 3
$
//’1»
4
V=2sz /
—_—
Y
z2=1/2
. . . . x T
[— — — <l/ y=1/2 \///;//,;///;//,;/
2NN 22
. . . . > DN
2NN
- - — — ~ A~ n o
=0 4/ y=-1/2
z= — — —=H -
L FIG. 6. Schematic representation of the geometry with the shear
flow along the layers that are perpendicular to the walls. The shear
— . e plane is parallel to the layers. Here we show the undistorted sample
with the wall anchoring of= (cos¢y,sin ¢y,0).
— — — \J/
f=ely T T — — In this flow, the layers are flat and parallelXeY plane. It is

easy to see that this simple solution is realizable with the
FIG. 5. Schematic representation of the distortiorciassoci- ~Same surface alignment of= (cos ¢y,sin ¢,0) at the walls.
ated with the geometry described in Fig. 4. It can be seen that thklence, at the boundary and elsewhere, ¢harientation is
twist distortion near the walls is opposite in a sense to the twis€=(C0S¢,Sin ¢y,0). Here we examine the stability of this
distortion near the center. solution. We shall assume spatial variations only alongvthe
direction. The analysis is similar to that in field induced in-
stabilities. We takev=(2sy+2v,,0,2v,) and c=(cos(p,
: (47)  +¢),sin(@y+ #),0). Once again the instability involves a dis-
tortion in thec vector and also distortion of the layers due to
with B=—A(\b; —b,k)/bsk. The values ok andf are ob- ~ transverse permeation flow given by. It should be noted
tained from that the velocity along the direction of shear will not be
linear, but corrected by a nonlinear function. To estimate the
threshold shear ratg, we assume that the perturbations have
; an e time dependence. The instability is assumed to be
(49 stationary whereby the principle of exchange of stabilities is
valid and f=0 at threshold20]. The linearized hydrody-
namic equations are
} (49)

ink 2z kI
SIN KZ l—sm z

vy=B

I ki

, 2 | , 2 ,
Sbl(bl_b2b4) 1_k_tank§ :B3k b3b4+_b1tank5

b,
1+

f(bgb,+b?)= b3[ Bsk?+b;s

SCU yyFCovy yytSC3¢h y+Cav, =0, (51)
Fors>0 (s<0), there will be an instability above a thresh-
old value only ifb;=y,<0 (b;>0).

Above this threshold shear there existgransverse flow
vy, but unlike in the Fredericksz transition, this isot a
transient phenomenorAlso, well above the threshold, the —20,=NpCol yyyy: (53
twist distortion of thec vector near the center is opposite to
the twist near the plates. A schematic representation of such
ac vector distortion is depicted in Fig. 5. When theector SCiUy+SCrad+ Crvzy+ Crad yy=0. (54)
is aligned everywhere along theé axis with an imposed
shear flow in theY direction, there is no threshold for insta- Taking ¢;=sin¢, and ¢,=coSdg, C1=— y,¢0;—2ag@;
bility. —3a1001 95, Co=—v3(@5— @2 — y1/2 + ar+ag
+2a130705,  C3=4y3010,+Aa130102(05—07),  C4
= ag@y— (¥2/2) @2+ a100293, Cs=—(y3—ast ag

In this case, the layers are normal to the plates in the-2a1302) 0105, Co=—( ¥2/2) ©2, C7=(72/2) o1— g1
bookshelf geometry as shown in Fig. 6 and the shear plane i$2a10(2‘)01(P§_ gof), Cg=ay+ ay+ (ag+ ag)q,i, Co=
pa_rallel to the layers/=(2sy,0,0) andc_: (cossin$,0). - (A11¢§¢§+A21¢3+A12¢11)- C10= Y291, C11= —4Y3p1p2,
With | ¥1/v3|<1 and noc vector anchoring at the walls, we ¢~y o) “andcys= B, g2+ Bog2.

can readily verify that the continuum equations lead 10 @ Here we have neglected the elastic coupling between dis-

SCsU yy+ Celx yy+SCr¢h y+ Cglz gyt Col yyyy=0, (52)

2. Shear plane parallel to the layers

shear-independertvector orientation given by tortions in thec vector and those of the layers, i.€,=0.
These equations are similar to E431)—(34) and the solu-
COS 2py= — n (50) tions foruvy,v,,¢, andu are of the same form. The two

Y3 relations that yield the threshold shear are
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S(C2C7— CaCa)[SCio— 3 NpCoCioki]— (SCiy+Cigkd)[S(c,cs  center beVo. Then, from the continuity equation, a rough
) . estimate givew,=V,d/x. Then, from Eq.(58) we get the
—C1C6) + C2CoKi — 3 NpCo(CaCe— CaCe)ki1=0, (55)  pressurep, p=V,y6%/x\,. Equation(59) simplifies to x?
—2r6x— 8% «k?=0, wherer=Vop/n and k=+\,7, the

3 length scale introduced by permeation effects. Thus we get
i:El PiQiR =0, (56) for the length of the inlet sectioh,
. . I 2
where Pi=5Ci0— 31\ pCoC1K] , Ri=(2/)sinhzk L=I| R+ — 1+p2V(2)K—2 , (60)
—[se/(sciy+cidk?) Ikicoshikl,  Q=Z,k{ sinhiky ) 7

—Z3jGsinhzkol,  Q,=Z3k] sinhikjl—Zik5sinh3kyl, Qs whereR=pV,l/7 is the Reynold’s number aridthe sepa-
=2Z.k5 sinh 3kl —ZK] sinh 3k,  with  Z;=k; cosh3k| ration between the plates. From this it can be seen that we

—(2M)sinhikl. From these equations we can show that theget the length of inlet section adR for ordinary fluids in
2 the limit k—oc. Since viscosity dominates flows at smkll

threshold _shear ratg varies myer;ely as the square of thaendvo, this inlet section is comparable tcand depends on
sample thickness anidcreaseswith increasing\,. The lat-

T . ; . Co main flow velocity V. In smectic LCs,« is very small,
ter implies that as the w;cosﬂyeducesn the Z (_j|rect|on, a being of the order of the layer thickness. Then the inlet sec-
larger shear rate is required to make the stationary state Ul

stable. It should be emphasized that here also the transversgn is given by

permeation flow and layer curvature aret transientin this |2
flow induced instability. L=—. (62)
C. Poiseuille flow This is invariablyvery largecompared td and is indepen-

dent of the main flow velocity/. If |~10"2 cm,L~10 cm.

Hence actual experimental results in short tubes are not re-
In the classical Poiseuille flow, liquid flows into a capil- ally representative of the steady Poisseuille flow. This result

lary or the space between two parallel plates from a pressufig true of all smectic LCs in general. In this context, it is

head. The liquid enters with nearly a flat profile. A boundaryrelevant to recall here a recent calculation by Walton, Stew-

layer starts to develop at the walls at the entry point. As theart, and Towlef21] on the flow past finite obstacles in smec-

liquid flows down, the boundary layer thickness continu-tic liquid crystals. This calculation is an application of the

ously increases. A point downstream will be reached whergéheory of hydrodynamics of smecti&-LCs, i.e., it explicitly

the boundary layers with their nearly parabolic velocity pro-incorporates the permeation process, which is an essential

files meet or crossover at the center. It is only after this pointeature of flow past obstacles.

the velocity profile is stationary and becomes symmetrically

parabolic. Over the distance from the entry point to the 2. Hall effect

crossover point, called thialet section the velocity profile

over the cross section continuously changes as we go dow,

the tube. Hence, in the inlet section, the liquid in the centraé1<

region is continuosly accelerated and that at the walls is alétrong magnetic field, with respect to plane of shear. In this

ways at rest. . . ! N
. . . .section we shall briefly describe an analogous situation in
We present a simple analysis to estimate the length of th'%m(: LCs y 9

inlet section. We consider the case where the smectic layers We consider the geometry of Fig. 6. The stalie
are parallel to the plates that are in tkeY plane. Further, =(0,0,1), c= (cospsing,0), andv=(2v (&,) 60) is stable
1 1 1 1 1 1 X 1 1

the V?OCity field istgesf?ribed byd: (Ux’lg'v_ 2). The following below a threshold shear if we assume that a strong magnetic
equations govern the flows, andv, [12] field alignsc at a particular angle. Then

1. Inlet section

In the case of uniaxial nematic LCs, it is known that there
ists in a planar Poiseuille flow a transverse pressure gradi-
nt when the director is held at an angle, say, by an infinitely

duy ﬁvz_o 5 d2v Y
X ez Y (57 P = ay+ag+2a13C08 ¢ SIP p— —
J dy2 2
ap Uy
Ay dvy ap azUx dzUx Y2 .
p UXW-FUZE :_&‘f"r] (922 . (59) P’Z:COS¢d_y2 a8_?+2a10 Slnz ¢ . (63)

Here 7 is the effective coefficient of viscosity ang, is the It can be seen that there exists a transverse pressure gradient
permeation constant. We can estimate fr(s@)—(59) the P, whenever the vector is not alongy, i.e., ¢=13m, orat
boundary layer thicknes8 up to which the transverse pres- a particular anglep=sin"/(y,— 2ag)/4a,,]. The addi-

sure gradient extends. We findl to be a function of the tional feature compared to nematic LCs is that there are three
distancex from the edge of the plate. Let the flow at the possibilities in view of Eqs(28) and (29): (i) A pressure
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gradient develops along thé direction without any lattice the director that alters the director profile. In the transient
dilatation or flow alongZ, (ii) the pressure gradient is ac- stage, layer distortion can arise even in the absence of the
companied by layer dilatation, but without any macroscopiccoupling parameter. The velocity normal to the layers can
flow along the layer normal, andii) the pressure gradient become comparable to that along the layers. Then, we con-
leads to layer dilatation and flow along the layer normal. sideredc vector instabilities in shear flows. When there is a
In the absence of an external field also, the vector willshear flow with the layers slipping past each other and the
align, but along the Leslie anglé,. Hence the transverse flow is along the direction ot, there is a threshold shear
pressure gradient exists even in such a situation, urpgss above which the uniformly aligned S@-LC becomes un-
actually happens to be equal toiwm or stable. This leads to a transverse flow along the layers. The
sin"[\(y,—2ag)/4a,,). This type of Hall effect is peculiar twist distortion of thec vector near the center is opposite to
to SmC LCs. the twist near the plates. When the shear is along the layers,
there develops again above a threshold shear an instability of
IV. CONCLUSION the uniform sample wittc vector at the Leslie angle. This
) ) instability has transverse permeation flow and layer curva-
We have developed a macroscopic hydrodynamic theory,re. Even below these threshold shears, these Poiseuille
of Sm-C liquid crystals. This is described by the hydrody- flows are associated with some special features. In the case
namic Variables, ViZ., the material denSity, the fluid VelOCity,of |ayers s||d|ng past each Other, the |ength of the inlet sec-
the energy denSity, the scalar variable that describes the IaYron is very |arge Compared to the Samp|e thickness and is
ering, and the vectar. The asymmetric stress tensor consistsindependent of main flow velocity. In the case of flow and
of 16 shear ViSCOSity coefficients, three of which are aSSOCishear para||e| to the |ayerS’ a transverse pressure gradient

ated with dissipative torques. Our theory agrees with the eakxists even in the absence of an aligning field and this is
lier theorieq 1,12] where a symmetric stress tensor has beefbeculiar to SmE LCs.

assumed. In the study of the reorientation dynamics of the

director in an external field, we showed that assuming the

layers to be flat or the veI_ocny normal to thg layers to be zero ACKNOWLEDGMENT

leads to an overdetermined set of equations. There exists

coupling between curvature of the layers and orientation of Our thanks are due to K. A. Suresh for helpful comments.
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